1. The weight of a piece of wire is directly proportional to its length.

A piece of wire is 25 cm long and has a weight of 6 grams.
Another piece of the same wire is 30 cm long.
Calculate the weight of the 30 cm piece of wire.

grams

(Total 2 marks)
2. A ball falls vertically after being dropped.

The ball falls a distance d metres in a time of t seconds. d is directly proportional to the square of t.

The ball falls 20 metres in a time of 2 seconds.
(a) Find a formula for d in terms of t.

$$
d=.
$$

(b) Calculate the distance the ball falls in 3 seconds.
m
(c) Calculate the time the ball takes to fall 605 m .
3. The time, T seconds, it takes a water heater to boil some water is directly proportional to the mass of water, $m \mathrm{~kg}$, in the water heater.

When $m=250, T=600$
(a) Find T when $m=400$

$$
T=
$$

The time, T seconds, it takes a water heater to boil a constant mass of water is inversely proportional to the power, P watts, of the water heater.

When $P=1400, T=360$
(b) Find the value of T when $P=900$

$$
T=. .
$$

4. $\quad D$ is proportional to S^{2}.
$D=900$ when $S=20$
Calculate the value of D when $S=25$
$D=$ \qquad
(Total 4 marks)
5. In a spring, the tension (T newtons) is directly proportional to its extension $(x \mathrm{~cm})$. When the tension is 150 newtons, the extension is 6 cm .
(a) Find a formula for T in terms of x.

(b) Calculate the tension, in newtons, when the extension is 15 cm .
newtons
(c) Calculate the extension, in cm, when the tension is 600 newtons.
cm
6. d is directly proportional to the square of t.
$d=80$ when $t=4$
(a) Express d in terms of t.
(b) Work out the value of d when $t=7$

$$
d=\ldots \ldots \ldots \ldots \ldots \ldots \ldots
$$

(c) Work out the positive value of t when $d=45$
7. The distance, D, travelled by a particle is directly proportional to the square of the time, t, taken.

When $t=40, D=30$
(a) Find a formula for D in terms of t.

$$
D=
$$

(b) Calculate the value of D when $t=64$
(c) Calculate the value of t when $D=12$

Give your answer correct to 3 significant figures.
8. $\quad M$ is directly proportional to L^{3}.

When $L=2, M=160$
Find the value of M when $L=3$
9. $\quad p$ is inversely proportional to m.
$p=48$ when $m=9$
Calculate the value of p when $m=12$
10. r is inversely proportional to t.
$r=12$ when $t=0.2$
Calculate the value of r when $t=4$.
11. f is inversely proportional to d.

When $d=50, f=256$
Find the value of f when $d=80$

$$
f=
$$

\qquad
(Total 3 marks)
12. y is inversely proportional to x^{2}.

Given that $y=2.5$ when $x=24$,
(i) find an expression for y in terms of x

$$
y=\text {............................... }
$$

(ii) find the value of y when $x=20$

$$
y=.
$$

(iii) find a value of x when $y=1.6$

$$
x=.
$$

(Total 6 marks)
13. P is inversely proportional to d^{2}.

$$
P=10000 \text { when } d=0.4
$$

Find the value of P when $d=0.8$

$$
P=
$$

\qquad
(Total 3 marks)
14. The shutter speed, S, of a camera varies inversely as the square of the aperture setting, f. When $f=8, S=125$
(a) Find a formula for S in terms of f.
(b) Hence, or otherwise, calculate the value of S when $f=4$

$$
S=.
$$

15. q is inversely proportional to the square of t.

When $t=4, q=8.5$
(a) Find a formula for q in terms of t.

$$
q=
$$

(b) Calculate the value of q when $t=5$
16. P is inversely proportional to V.

When $V=8, P=5$
(a) Find a formula for P in terms of V.

$$
P=
$$

(b) Calculate the value of P when $V=2$
17. The force, F, between two magnets is inversely proportional to the square of the distance, x, between them.

When $x=3, F=4$.
(a) Calculate F when $x=2$.
(b) Calculate x when $F=64$.

